Phytochemistry, 1973, Vol 12, p. 1496. Pergamon Press. Printed in England.

BRANCHED FATTY ACIDS IN TWO ABIES SPECIES

R. GRANADOS, J. M. RIBO and E. TORRES

Departmento de Quimica Organica, Facultad de Ciencias, Universidad de Barcelona, Spain

(Received 2 January 1973. Accepted 23 January 1973)

Key Word Index—Abies alba; Abies tazaotana; Pinaceae; n-fatty acids; branched fatty acids.

Plant. Abies alba Mill. *Source.* Setcases (Gerona). Collected in March 1970. *Previous work.* Lipids on leaves.¹ *Plant part examined.* Heartwood. Extracted with Et₂O and then with acetone. A free and a combined acid fraction were isolated. Non hydroxylated methyl esters were isolated by column chromatography on silica gel and analyzed by GLC.².³ We were able to identify the following fatty acids: in the free acid fraction; (<1%) 13:0, 15·0, br 15:0, 17:0, 19:0, 21:0, 25:0, 26·0, 27:0, 28:0, 12:1, 13·1, 14:1, 17:1, 19:1, 21:1, 23:1, 20:2, 18:3 (9, 12, 15); (1–3%) 12·0, 14:0, 18·0, 20:0, 23·0, 16:1, 20:1, 18:3; (3–8%) 22:0, 24:0, 18:2; (14%) 16:0, br 17:0; (20%) 18:1 (9), on the combined acid fraction; (<1%) 13:0, 15·0, br 15:0, 17:0, 19:0, 21:0, 25·0, 26·0, 12·1, 13·1, 14:1, 17·1, 19:1, 21:1, 23:1, 20:2, 18:3 (9, 12, 15); (1–3%) 12·0, 14:0, 18·0, 20·0, 23·0, 16:1, 20·1; (3–8%) 22:0, 24:0, 18:3; (12%) 16:0, br 17:0; (35%) 18:1 (9).

The nonhydroxylated free acid fraction by repeated column chromatography on AgNO₃-silica gel and urea complex formation, afforded a mixture of branched fatty acids including unsaturated members. Hydrogenation with PtO₂-AcOEt (10 min) and urea complex formation gave a fraction with 15% straight chain acids (mainly 18.0) and $[\alpha]_D + 6.0^\circ$. Analyzed by GLC-MS, the branched fatty acids were identified as, C_{13} (2%), C_{15} (3%), C_{16} (4%), C_{17} (50%), C_{18} (1%), C_{19} (20%). MS showed the acids were all monomethylbranched. The majority were anteiso (ω 3). Isomers with a methyl group between carbon atom 7 and position ω 5 were always present. Branching at the 3 or 4 carbon atoms was small and no Methyl groups were found on the 2 or 6 carbon atoms and in the ω 4 position. Detection of branching at *iso* and at carbon atoms 5 is difficult when other types are present.

The amount of br 19:0 and isomers with branching between carbon atom 7 and position $\omega 5$, suggest that cyclopropane and cyclopropene fatty acids might be present and, hydrogenation might have opened the ring.

Plant. Abies tazaotana S. Cozar. *Source*. Tazaot mountains (Morocco). *Previous work*. On cyclitols and phenolics.⁷

Plant part examined. Heartwood. The free acid fraction coming from, was analyzed by GLC as before. The proportion of br 17:0 and br 15:0 related to 16:0 was 70% and 20% respectively.

Acknowledgements—We thank to Houghton Hispania for the GLC-MS analysis, and to Ministerio de Educación Nacional for the fellowship to one of us (E.T.).

¹ Jamieson, G. R. and Reid, E. H. (1972) Phytochemistry 11, 269.

² James, A. T. (1959) J. Chromatog 2, 552

³ ACKMAN, R. G. (1963) J Am. Oil Chemists' Soc. 40, 559

⁴ RYHAGE, R and STENHAGEN, E. (1963) Mass Spectrometry of Organic Ions (McLafferty, F. W., ed.), p 339, Academic Press, New York

⁵ ODHAM, G. (1964) Ark. Kemi 22, 417.

⁶ ODHAM, G. (1964) Ark. Kemi 23, 431.

⁷ Granados, R. and Acosta, J E (1968) An. Soc. Españ. 64, 1095.